参考:https://www.cnblogs.com/KubeExplorer/p/18624112

NVIDIA 实现了NVIDIA/k8s-device-plugin 来使得节点上的 GPU 能够被 k8s 感知到。具体的device plugin可以看http://www.wuyq.net/archives/k8s-device-plugin。

这个 device plugin 主要做两件事:

  • 1)检测节点上的 GPU 设备并上报给 Kubelet,再由 Kubelet 更新节点信息时提交到 kube-apiserver。

    • 这样 k8s 就知道每个节点上有多少 GPU 了,后续 Pod 申请 GPU 时就会往有 GPU 资源的节点上调度。

  • 2)Pod 申请 GPU 时,为对应容器添加一个NVIDIA_VISIBLE_DEVICES环境变量,后续底层 Runtime 在真正创建容器时就能根据这些信息把 GPU 挂载到容器中

    • 例如添加环境变量: NVIDIA_VISIBLE_DEVICES=GPU-03f69c50-207a-2038-9b45-23cac89cb67d

1、GPU如何分配给Pod

NVIDIA 提供了 nvidia-container-toolkit 来处理如何将 GPU 分配给容器的问题。

核心组件有以下三个:

  • nvidia-container-runtime

  • nvidia-container-runtime-hook

  • nvidia-container-cli

首先需要将 docker/containerd 的 runtime 设置为nvidia-container-runtime,此后整个调用链就变成这样了:

nv-container-runtime-call-flow

接下来就具体分析每个组件的作用。

(1)nvidia-container-runtime

nvidia-container-runtime 的作用就是负责在容器启动之前,将 nvidia-container-runtime-hook 注入到 prestart hook。

小知识:docker/containerd 都是高级 Runtime,runC 则是低级 Runtime。不同层级 Runtime 通过 OCI Spec 进行交互。

也就是说 docker 调用 runC 创建容器时,会把 docker 收到的信息解析,组装成 OCI Spec,然后在往下传递。

而 nvidia-container-runtime 的作用就是修改容器 Spec,往里面添加一个 prestart hook,这个 hook 就是 nvidia-container-runtime-hook 。

这样 runC 根据 Spec 启动容器时就会执行该 hook,即执行 nvidia-container-runtime-hook。

也就是说 nvidia-container-runtime 其实没有任何逻辑,真正的逻辑都在 nvidia-container-runtime-hook 中。

(2)nvidia-container-runtime-hook

nvidia-container-runtime-hook 包含了给容器分配 GPU 的核心逻辑,主要分为两部分:

  • 1)从容器 Spec 的 mounts 和 env 中解析 GPU 信息

    • mounts 对应前面 device plugin 中设置的 Mount 和 Device,env 则对应 Env

  • 2)调用 nvidia-container-cli configure 命令,保证容器内可以使用被指定的 GPU 以及对应能力

也就是说nvidia-container-runtime-hook 最终还是调用 nvidia-container-cli 来实现的给容器分配 GPU 能力的。

(3)nvidia-container-cli

nvidia-container-cli 是一个命令行工具,用于配置 Linux 容器对 GPU 硬件的使用。

提供了三个命令

  • list: 打印 nvidia 驱动库及路径

  • info: 打印所有Nvidia GPU设备

  • configure: 进入给定进程的命名空间,执行必要操作保证容器内可以使用被指定的 GPU 以及对应能力(指定 NVIDIA 驱动库)

一般主要使用 configure 命令,它将 NVIDIA GPU Driver、CUDA Driver 等 驱动库的 so 文件 和 GPU 设备信息, 通过文件挂载的方式映射到容器中。


整个流程如下:

  • 1)device plugin 上报节点上的 GPU 信息

  • 2)用户创建 Pod,在 resources.rquest 中申请 GPU,Scheduler 根据各节点 GPU 资源情况,将 Pod 调度到一个有足够 GPU 的节点

  • 3)DevicePlugin 根据 Pod 中申请的 GPU 资源,为容器添加 Env 和 Devices 配置

    • 例如添加环境变量:NVIDIA_VISIBLE_DEVICES=GPU-03f69c50-207a-2038-9b45-23cac89cb67d

  • 4)docker / containerd 启动容器

    • 由于配置了 nvidia-container-runtime,因此会使用 nvidia-container-runtime 来创建容器

    • nvidia-container-runtime 额外做了一件事:将 nvidia-container-runtime-hook 作为 prestart hook 添加到容器 spec 中,然后就将容器 spec 信息往后传给 runC 了。

    • runC 创建容器前会调用 prestart hook,其中就包括了上一步添加的 nvidia-container-runtime-hook,该 hook 主要做两件事:

      • 从容器 Spec 的 mounts 或者 env 中解析 GPU 信息

      • 调用 nvidia-container-cli configure 命令,将 NVIDIA 的 GPU Driver、CUDA Driver 等库文件挂载进容器,保证容器内可以使用被指定的 GPU以及对应能力

以上就是在 k8s 中使用 NVIDIA GPU 的流程,简单来说就是:

  • 1)device plugin 中根据 pod 申请的 GPU 资源分配 GPU,并以 ENV 环境变量方式添加到容器上。

  • 2)nvidia-container-toolkit 则根据该 Env 拿到要分配给该容器的 GPU 最终把相关文件挂载到容器里

2、nvidia-container-toolkit 源码分析

这部分我们主要分析,为什么添加了NVIDIA_VISIBLE_DEVICES 环境变量就会给该容器分配 GPU,nvidia-container-toolkit 中做了哪些处理。

nvidia-container-toolkit 包含以下 3 个部分:

  • nvidia-container-runtime

  • nvidia-container-runtime-hook

  • nvidia-container-cli

2.1、nvidia-container-runtime

nvidia-container-runtime 可以看做是一个 docker/containerd 的底层 runtime(类似 runC),在模块在创建容器的整个调用链中处在如下位置:

nv-container-runtime-call-flow

它只做一件事,就是在容器启动之前,将 nvidia-container-runtime-hook 注入到 prestart hook。

以修改容器 Spec 的方式添加一个 prestart hook 进去

这样,后续 runC 使用容器 Spec 创建容器时就会执行该 prestart hook。

path := m.nvidiaContainerRuntimeHookPath
spec.Hooks.Prestart = append(spec.Hooks.Prestart, specs.Hook{
   Path: path,
   Args: append(args, "prestart"),
})

可以看到,最终就是添加了一个 prestart hook,hook 的 path 就是 nvidia-container-runtime-hook 这个二进制文件的位置。

至此,nvidia-container-runtime 的工作就完成了,容器真正启动时,底层 runtime(比如 runC)检测到容器的 Spec 中有这个 hook 就会去执行了,最终 nvidia-container-runtime-hook 就会被运行了。

2.2、nvidia-container-runtime-hook

该组件则是 nvidia-container-toolkit 中的核心,所有的逻辑都在这里面实现。

主要做两件事:

  • 1)从容器的 env 中解析 GPU 信息

  • 2)调用 nvidia-container-cli configure 命令,挂载相关文件,保证容器内可以使用被指定的GPU以及对应能力

也是先从启动命令看起:nvidia-container-runtime-hook/main.go

switch args[0] {
case "prestart":
    doPrestart()
    os.Exit(0)
case "poststart":
    fallthrough
case "poststop":
    os.Exit(0)
default:
    flag.Usage()
    os.Exit(2)
}

我们是添加的 prestart hook,因此会走 prestart 分支 执行doPrestart()方法。

args := []string{getCLIPath(cli)}
container := getContainerConfig(*hook)
err = syscall.Exec(args[0], args, env)

一个是 getContainerConfig 解析容器配置 ,另一个就是 exec 真正开始执行命令。

getContainerConfig 这部分就是解析 Env 拿到要分配给该容器的 GPU,如果没有 NVIDIA_VISIBLE_DEVICES 环境变量就不会做任何事情。

func getContainerConfig(hook HookConfig) (config containerConfig) {
    var h HookState
    d := json.NewDecoder(os.Stdin)
    if err := d.Decode(&h); err != nil {
       log.Panicln("could not decode container state:", err)
    }

    b := h.Bundle
    if len(b) == 0 {
       b = h.BundlePath
    }

    s := loadSpec(path.Join(b, "config.json"))

    image, err := image.New(
       image.WithEnv(s.Process.Env),
       image.WithDisableRequire(hook.DisableRequire),
    )
    if err != nil {
       log.Panicln(err)
    }

    privileged := isPrivileged(s)
    return containerConfig{
       Pid:    h.Pid,
       Rootfs: s.Root.Path,
       Image:  image,
       Nvidia: getNvidiaConfig(&hook, image, s.Mounts, privileged),
    }
}

构建了一个 image 对象,注意这里把 ENV 也传进去了。之前说了需要给容器分配什么 GPU 是通过 NVIDIA_VISIBLE_DEVICES 环境变量指定的。

image, err := image.New(
    image.WithEnv(s.Process.Env),
    image.WithDisableRequire(hook.DisableRequire),
)

然后解析配置:

func getNvidiaConfig(hookConfig *HookConfig, image image.CUDA, mounts []Mount, privileged bool) *nvidiaConfig {
    legacyImage := image.IsLegacy()

    var devices string
    if d := getDevices(hookConfig, image, mounts, privileged); d != nil {
       devices = *d
    } else {
       // 'nil' devices means this is not a GPU container.
       return nil
    }

    var migConfigDevices string
    if d := getMigConfigDevices(image); d != nil {
       migConfigDevices = *d
    }
    if !privileged && migConfigDevices != "" {
       log.Panicln("cannot set MIG_CONFIG_DEVICES in non privileged container")
    }

    var migMonitorDevices string
    if d := getMigMonitorDevices(image); d != nil {
       migMonitorDevices = *d
    }
    if !privileged && migMonitorDevices != "" {
       log.Panicln("cannot set MIG_MONITOR_DEVICES in non privileged container")
    }

    var imexChannels string
    if c := getImexChannels(image); c != nil {
       imexChannels = *c
    }

    driverCapabilities := hookConfig.getDriverCapabilities(image, legacyImage).String()

    requirements, err := image.GetRequirements()
    if err != nil {
       log.Panicln("failed to get requirements", err)
    }

    return &nvidiaConfig{
       Devices:            devices,
       MigConfigDevices:   migConfigDevices,
       MigMonitorDevices:  migMonitorDevices,
       ImexChannels:       imexChannels,
       DriverCapabilities: driverCapabilities,
       Requirements:       requirements,
    }
}

核心是 getDevice,就是根据 Mounts 信息或者 Env 解析要分配给该容器的 GPU

func getDevices(hookConfig *HookConfig, image image.CUDA, mounts []Mount, privileged bool) *string {
    // If enabled, try and get the device list from volume mounts first
    if hookConfig.AcceptDeviceListAsVolumeMounts {
       devices := getDevicesFromMounts(mounts)
       if devices != nil {
          return devices
       }
    }

    // Fallback to reading from the environment variable if privileges are correct
    devices := getDevicesFromEnvvar(image, hookConfig.getSwarmResourceEnvvars())
    if devices == nil {
       return nil
    }
    if privileged || hookConfig.AcceptEnvvarUnprivileged {
       return devices
    }

    configName := hookConfig.getConfigOption("AcceptEnvvarUnprivileged")
    log.Printf("Ignoring devices specified in NVIDIA_VISIBLE_DEVICES (privileged=%v, %v=%v) ", privileged, configName, hookConfig.AcceptEnvvarUnprivileged)

    return nil
}

可以看到这里根据配置不同,提供了两种解析 devices 的方法:

  • getDevicesFromMounts

  • getDevicesFromEnvvar

这也就是为什么 nvidia device plugin 除了实现 Env 之外还实现了另外的方式,二者配置应该要对应才行。

这里我们只关注 getDevicesFromEnvvar,从环境变量里解析 Device:

envNVVisibleDevices     = "NVIDIA_VISIBLE_DEVICES"

func getDevicesFromEnvvar(image image.CUDA, swarmResourceEnvvars []string) *string {
	// We check if the image has at least one of the Swarm resource envvars defined and use this
	// if specified.
	var hasSwarmEnvvar bool
	for _, envvar := range swarmResourceEnvvars {
		if image.HasEnvvar(envvar) {
			hasSwarmEnvvar = true
			break
		}
	}

	var devices []string
	if hasSwarmEnvvar {
		devices = image.DevicesFromEnvvars(swarmResourceEnvvars...).List()
	} else {
		devices = image.DevicesFromEnvvars(envNVVisibleDevices).List()
	}

	if len(devices) == 0 {
		return nil
	}

	devicesString := strings.Join(devices, ",")

	return &devicesString
}

核心如下:

devices = image.DevicesFromEnvvars(envNVVisibleDevices).List()

从 image 里面提取NVIDIA_VISIBLE_DEVICES环境变量,至于这个 Env 是哪里来的,也是容器 Spec 中定义的,之前 image 是这样初始化的:

	s := loadSpec(path.Join(b, "config.json"))

	image, err := image.New(
		image.WithEnv(s.Process.Env), // 这里把容器 env 传给了 image 对象
		image.WithDisableRequire(hook.DisableRequire),
	)

至此,我们知道了这边 runtime 是怎么指定要把哪些 GPU 分配给容器了,接下来进入 Exec 逻辑。

Exec 部分比较短,就是这两行代码:

args := []string{getCLIPath(cli)}
err = syscall.Exec(args[0], args, env)

首先是 getCLIPath,用于寻找 nvidia-container-cli 工具的位置并作为第一个参数。

最后则是调用 syscall.Exec 真正开始执行命令
该命令具体在做什么呢,接着分析 nvidia-container-cli 实现。

2.3、nvidia-container-cli

nvidia-container-cli 是一个 C 写的小工具,主要作用就是根据上执行命令时传递的参数,把GPU 设备及其相关依赖库挂载到容器中,使得容器能够正常使用 GPU 能力。

简单看下部分代码。

首先是驱动信息:

// https://github.com/NVIDIA/libnvidia-container/blob/master/src/cli/configure.c#L279-L288

/* Query the driver and device information. */
if (perm_set_capabilities(&err, CAP_EFFECTIVE, ecaps[NVC_INFO], ecaps_size(NVC_INFO)) < 0) {
        warnx("permission error: %s", err.msg);
        goto fail;
}
if ((drv = libnvc.driver_info_new(nvc, NULL)) == NULL ||
    (dev = libnvc.device_info_new(nvc, NULL)) == NULL) {
        warnx("detection error: %s", libnvc.error(nvc));
        goto fail;
}
  • nvc_driver_info_new():获取 CUDA Driver 信息

  • nvc_device_info_new():获取 GPU Drvier 信息

然后获取容器中可见的 GPU 列表

// https://github.com/NVIDIA/libnvidia-container/blob/master/src/cli/configure.c#L308-L314

        /* Select the visible GPU devices. */
        if (dev->ngpus > 0) {
                if (select_devices(&err, ctx->devices, dev, &devices) < 0) {
                        warnx("device error: %s", err.msg);
                        goto fail;
                }
        }

最后则是将相关驱动挂载到容器里去:

// https://github.com/NVIDIA/libnvidia-container/blob/master/src/cli/configure.c#L362-L408

/* Mount the driver, visible devices, mig-configs and mig-monitors. */
if (perm_set_capabilities(&err, CAP_EFFECTIVE, ecaps[NVC_MOUNT], ecaps_size(NVC_MOUNT)) < 0) {
        warnx("permission error: %s", err.msg);
        goto fail;
}
if (libnvc.driver_mount(nvc, cnt, drv) < 0) {
        warnx("mount error: %s", libnvc.error(nvc));
        goto fail;
}
for (size_t i = 0; i < devices.ngpus; ++i) {
        if (libnvc.device_mount(nvc, cnt, devices.gpus[i]) < 0) {
                warnx("mount error: %s", libnvc.error(nvc));
                goto fail;
        }
}

libnvidia-container是采用 linux c mount --bind功能将 CUDA Driver Libraries/Binaries一个个挂载到容器里,而不是将整个目录挂载到容器中。

可通过NVIDIA_DRIVER_CAPABILITIES环境变量指定要挂载的 driver libraries/binaries。

例如:

docker run -e NVIDIA_VISIBLE_DEVICES=0,1 -e NVIDIA_DRIVER_CAPABILITIES=compute,utility -it tensorflow/tensorflow:latest-gpu bash

指定NVIDIA_DRIVER_CAPABILITIES=compute,utility 就会把 compute 和 utility 相关的库挂载进去。

这样容器里就可以使用 GPU 了。

至此,相关源码就分析完成了。

3、总结

整个流程如下:

  • 1)device plugin (list and watch)上报节点上的 GPU 信息

  • 2)用户创建 Pod,在 resources.rquest 中申请 GPU,Scheduler 根据各节点 GPU 资源情况,将 Pod 调度到一个有足够 GPU 的节点

  • 3)DevicePlugin (allocate)根据 Pod 中申请的 GPU 资源,为容器添加NVIDIA_VISIBLE_DEVICES环境变量

    • 例如:NVIDIA_VISIBLE_DEVICES=GPU-03f69c50-207a-2038-9b45-23cac89cb67d

  • 4)docker / containerd 启动容器

    • 由于配置了 nvidia-container-runtime,因此会使用 nvidia-container-runtime 来创建容器

    • nvidia-container-runtime 额外做了一件事:将 nvidia-container-runtime-hook 作为 prestart hook 添加到容器 spec 中,然后就将容器 spec 信息往后传给 runC 了。

    • runC 创建容器前会调用 prestart hook,其中就包括了上一步添加的 nvidia-container-runtime-hook,该 hook 主要做两件事:

      • 从容器 Spec 的 mounts 或者 env 中解析 GPU 信息

      • 调用 nvidia-container-cli 命令,将 NVIDIA 的 GPU Driver、CUDA Driver 等库文件挂载进容器,保证容器内可以使用被指定的 GPU以及对应能力

核心就是两个部分:

  • device plugin 根据 GPU 资源申请为容器添加 NVIDIA_VISIBLE_DEVICES环境变量

  • nvidia-container-toolkit 则是根据 NVIDIA_VISIBLE_DEVICES环境变量将 GPU、驱动等相关文件挂载到容器里。

GPT:Pod 之所以“能用到 GPU”,是因为运行时只把被允许的 /dev/nvidia* 设备节点和驱动/库挂进容器,并用 cgroup 设备权限 + CUDA 的可见性过滤把其它 GPU 全部屏蔽。容器里跑的进程(PyTorch、TensorFlow、FFmpeg、NVENC 等)通过 libcuda.so 打开这些字符设备,向宿主机内核驱动发 ioctl 调用,最终把工作交给对应的那块 GPU。

  • Device Plugin 负责“分配哪块”的决策 + 标记(env/mount/devices)。

  • nvidia-container-runtime 负责把 那块 GPU 的设备节点和驱动库 挂进容器并设好 cgroup 权限

  • 应用仅仅按正常的 CUDA 用法编程(cudaSetDevice()、torch.cuda.*),剩下的由 驱动与运行时 完成——因此 Pod 就“自然地用上”了被分配的那块 GPU,同时被硬性隔离在那块以内。